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Abstract-A finite element formulation for analysing the stresses in the adhesive of a single-lap
joint is presented. The element is based on the Timoshenko beam theory and an assumed variation
of the transverse shear stress and transverse normal stress through the thickness of the adherends.
This element formulation in conjunction with the variational principle is used for determining
constitutive relations in the adhesive layer. By means of the finite element formulation presented
herein, any possible adhesive-layer conditions and nonidentical adherends in a single-lap joint are
taken into account. Numerical examples are provided to illustrate the effects of the thickness of
adhesive and nonidentical adherends on extreme stress in the adhesive.

I. INTRODUCTION

Most structures consist of an assembly of a number of individual elements connected to
form a load transmission path. The use of adhesive joints is increasing because of a number
ofadvantages they offer. In adhesive bonding, the aim is to transfer the load smoothly from
one adherend to the other, minimizing the peak shear stresses and peel stresses in the
adhesive layer.

Early theoretical studies of the stresses in adhesive joints were directed towards the
single-lap joint. Goland and Reissner (1944) presented closed-form solutions of stress
distribution in lap joints using a two-dimensional elasticity solution, and an assumption of
relatively flexible adhesive layer. Later, this assumption for relatively flexible adhesive layers
was formalized as the spring-beam analogy and used to study the stresses in a brazed tab
fatigue specimen by Cornell (1953). Ojalvo and Eidinoff (1978) extended the theory of
Goland and Reissner through the use of a more complete relation between shear strain and
displacement corresponding to linearly varying displacements through the thickness of the
adhesive. Roberts (1989) presented an analytical procedure based on beam theory solution
and the assumption of relatively flexible adhesive layers.

Adams and Peppiatt (1974) and Adams and Wake (1984) used conventional finite
elements to analyse the stress distribution in various lap joints. Rao et al. (1982) developed
a 6-noded isoparametric interface element. Carpenter (1973, 1980) proposed an adhesive
element based on the assumption common to the theories of Goland and Reissner as well
as Ojalvo and Eidinoff. Further applications of interface elements to adhesive-bonded joint
problems are investigated by some scholars. Previous methods for analysing single-lap
adhesive joints were based on the assumption that the adhesive layer is relatively flexible.
So, they can only deal with a certain range of flexibility of the adhesive layer but meet some
difficulty for relatively inflexible adhesive layers. In adhesive bonding, loads are carried by
the surface of the adherends in shear through a layer of adhesive, Therefore, shear effects
are important in the adhesive-bonded joints, However, the foregoing references dealt with
the beam theory without the effect of transverse shear.

The objective of this study is to develop a new finite element formulation for the
adhesive that includes all transverse effects of the shear stress and normal stress in the
adherend. Subsequently, its basic assumption involves the variation of the transverse shear
stress and transverse normal stress through the thickness of the adherends. The element
formulation in conjunction with the variational principle is used for determining the consti
tutive relations in the adhesive layer. By means of the finite element formulation presented
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herein, any possible adhesive-layer conditions and nonidentical adherends with different
thicknesses and different materials in a single-lap joint are taken into account.

2. FORMULAnON

Considering a single-lap adhesive joint, the coordinate system geometry, and sign
convention for shear and normal stress for an adhesive joint is shown in Fig. 1. For
notational convenience, ( )(kJ, k = 1,2 will denote quantities associated with the kth adher
end. We make the assumption that:

(I) Each adherend is considered to be in a state of plane stress.
(2) The longitudinal direct stresses in the adhesive are negligible when compared with

those in the adherends.
(3) Longitudinal and transverse deflection in the bond material vary linearly through

the adhesive thickness between the adherends.
(4) The shear stress in the adhesive is held constant through the thickness of the

adhesive, and is equivalent to the mean stress.

The governing relations for the displacement vector d k
), W(k), the strain tensor e}7) and

the stress tensor (Tt) in the kth adherend are expressed as follows:

(a) Stress-strain relations in the kth adherend

(T~"J = E(kJ e~"J + V(k) (T~~) ,
r~") = 2G(k)e~"),

(b) Strain-displacement relations in the kth adherend
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(I c)
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Fig. I. Coordinates, geometry and sign conventions in adhesive joint.
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elk) = 1 (U(k) +W(k»)
xz 2,z ,x,
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(2a)

(2b)

where y(k) is Poisson's ratio.
The following assumptions, the adhesive strain and the adhesive strain-stress relations,

are given by:

(c) Strain-displacement relations in the adhesive

Ya = [U(I)(x,Z(I) = - ~()-U(2)(X,z<2) = ~2)J/ha,

Ea = [W(I)(x,z(I) = - ~()-W(2)(X'Z(2) = h22 ) JIha·

(d) Stress-strain relations in the adhesive

(3a)

(3b)

(4a)

(4b)

The development of a constitutive relation for the adhesive is facilitated by using the
variational principle for the boundary value problem of total quantities. The variational
principle applied to the single-lap joint becomes

( (
1 Y2jk»)J fha

/
2

[+ Ja(k) W(k) + y(k) elk) - --=- a(k) dz(k) + Jy 'r +& a
zz,Z xx E zz -h

a
l2 a a a a

where t~k), t~k) are the boundary tractions.
Based on Timoshenko beam theory, the trial displacement field of the adherends is

given by

U(I)(x, z(l») = U(I)(x) +z(l){;I(I) (x),

u(2)(x,z<2») = U(2)(x)+z<2){;I(2)(X),

w(I)(x,z(l») = W(I)(X),

W(2)(X,Z(2») = W(2)(X),

(6a)

(6b)

(6c)

(6d)

where U(k), {;I(k), W(k) are mid-plane displacements in the kth adherend.
The transverse shear stress and normal stress field distribution through the thickness

of the kth adherend are taken to be

(7a)

and

aa [ 3Z(I) (Z«(»)3Ja(l) = - 1- -- +4 - fior
zz 2 hi hI (7b)
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2Q(2) [
(2) _

'-", - 2h
2

· I (7c)

() [ 3-(2) (7(2.).)3J
(J~:) = a 1+ -'" - 4 =..
~~ 2 h

2

for (7d)

where

(7e)

Let us consider an infinitesimal element of the adherend which is supported at its ends,
as illustrated in Fig. 2. Assuming that the load and intensity (fa are uniformly distributed,
we can obtain the transverse normal stress field (f;~) by using the Airy function. The
transverse shear stresses field t~~) may be represented by quadratic polynomials of Zlk).

Their coefficients are computed by using eqns (7e) and boundary condition equations
(8a-d) :

t{ I) (x Zl I) = ':~) = 0
xz, 2 ' (8a)

(8b)

"'(2)(X Z(2) = ~?:) = ""'xz ~, 2 'a' (8c)

(8d)

Substituting eqns (2), (3), (4), (6) and (7) into eqn (5) and using Gauss's theorem, one
obtains the following equilibrium equations, boundary conditions and constitutive equa
tions which automatically include the appropriate shear correction factors.

Equilibrium equations

N~;)-ta = 0,

N~;)+t(/ = 0,

(9a)

(9b)

x

,-
z(1)

d L/2 ,(d L/2

, Adherend 1

I ~ I I I

T
h,

.1

Fig. 2. Infinitesimal adherend element.
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hM(I)-Q(I)+ ~'t" =0
,x 2 a ,

M(2)_Q(2)+ h2 or = 0
,x 2 a ,

Q (I) -(1 = 0,x a ,

Q~)+(1a = 0,

where stress force resultants are defined by

Boundary conditions
The boundary condition at x = 0 and L :

bU(k) = 0 or Tik) = N(k),

b()(k) = 0 or T<fl = M(k),

bW(k) = 0 or T~k) = Q(k), k = 1,2,

where

f
hk l 2

T(k) = t(k) dz(k)
x x,

-(hk I2)

f
hk l 2

T(k) = Z(k) t(k) dik)
M x,

-(hk /2)

Constitutive equations

1683

(9c)

(9d)

(ge)

(9f)

(9g)

(9h)

(lOa)

(lOb)

(lOc)

(lOd)

(lOe)

(lOf)

Q(I) = (5G(!)h t + hiR) «()(I) + W(I»+ h!h2R«()(2) + W(2»
6 144 ,x 144 ,x

+ hlR (U(!) _ U(2) _ ~ ()(I) _ h2()(2») (1Ia)
12 2 2 '

Q(2) = h t h2R «()(I) + W(l»+ (5G(2)h 2 + h~R)«()(2) + W(2»
144 ,x 6 144 ,x

+ h2R (U( I) _ U(2) _ ~ ()( I) _ h2()(2») (II b)
12 2 2 '
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where correction factors are

(12a)

(I2b)

The remaining constitutive equations for N(k), M(k) are obtained by substituting eqns
(Ia), (7b), (7d), (lId) into eqns (9g), (9h):

(
« I»)2h2P) «I»)2h3p (1)(2)hhP

N(') = E(I)h +_~_~_l_ U(I)_~ __ ~I_. 8(1) + V V I 2 U(2)
I 4 ..\ 20'x 4 .-\

(I) (2)h h2p (')h P
+ ~----"__1_2_ 8(2) + _v__1_ (W(I) _ W(2») (13a)

20 ,x 2 '

(I) (2)h h P (I) (2)h 2h P ( ( (2))2h2P)
N(2) =V__V._I__?__ U(I) _ \.'_V~_I_.2._ 8(1) + E(2)h + _\.'~~2_ U(2)

4 .x 20 .x 2 4 ,x

3, FINITE ELEMENT FORMULATION

The principle of virtual work applied to a single-lap adhesive joint becomes

where

(13d)

(l4)

8(1)
,x

U(I) - U(2) _ ~ 8(1) _ h28(2)
2 2

W(I)-W(2) U(2) 8(2) 8(2) + W~~!)], (l5a).x ,x

{aV = [N(I) M(I) Q(I) Ta aa N(2) M(2) Q(2)], (15b)

{uV = [U(I) 8(1) W(I) U(2) 8(2) W(2)], (15c)

{q}T = [N(') M(I) Q(I) N(2) M(2) Q(2)], (15d)
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(l6a)

Let the domain L be subdivided into a finite number N I of individual finite elements
L., e = 1,2, ... , N 1• A single-lap joint element with nodes offset against both the upper and
lower adherend is developed. The schematic of the element is shown in Fig. 3. For each
element the generalized displacement a(k) in the kth adherend is interpolated by the nodal
displacement Oi at node i in the element:

N,

~(l) _ " -u - L. Ni(~)U2i-1>
i~ 1

N,

a(2) = L Ni(~)02;'
i= I

(l6b)

where 2Nn is the number of nodes of the element, N;(~) is the isoparametric interpolation
function and

ii, ~ [rl i~ 1,2, ... ,2N•.

It is now straightforward to define matrix [B] according to

(17)

{e} = [H]{U}, (18)

where

{U}T = [Oi 01 U1NJ, (l9a)

[H] = [HI H2 HN.], (19b)

aNi
0 0 0 0 0

ax

0
aNi

0 0 0 0
ax

0 N;
aN;

0 0 0-
ax

N;
hI

0 -N;
h2 0-~N -~N

B;= 2 I 2 I i = 1 ,..., Nn , {19c),
0 0 N; 0 0 -N;

0 0 0
aN;

0 0
ax

0 0 0 0
aN;

0
ax

0 0 0 0 N;
aNi

ax

the constitutive equations (II) and (13) can be expressed in the form

1 3 5 2Nn-1 fr

V
2 4 6 2N

T
h,

-L

t
~

-L
1----L.---_

Fig. 3. Schematic of element.
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{IT} = [DeHe}, (20)

where [De] is an 8 x 8 modulus matrix:

[De] =

0 D5

~l
D2 0

0 D,

D~ 0 D4

(21)

P
v(2)h

2
P v(2)h~P

-~-

2 10
v(2)h

2
P (v(2»2h 2P (v(2»2h~P

D,=
2

E(2)ho + ____2__
-~-~-----• 4 20

v(2)h~P (v(2»2Mp E(2)h~ (V(2»2h~P
~~'._-'-"" "'_ .•.~~-~--

12 +-~10 20

D
4

= [Sg(2)h 2 + JiJ.1!.J
6 144 '

(22a)

(22b)

(22c)

(22d)

V(I)V(2)h
l
h2P

--_._--,-_.'_.._,._._-'--".

4

VI l)v(2)hfh2P
-----~._~

20

V(I)V(2)hlh~P ]
----,-,--,-~~

20

V(1)V(2)hfh~P ,
- "''''-'~-'------

100

(22e)

(22f)

The element stiffness matrix [Ke
] of the single-lap joints is obtained as

4. NUMERICAL RESULTS

(23)

Example 1
The first demonstration example is the analysis of a single-lap joint subject to axial

force p and bending M = p(h 1+ h 2)/2, as shown in Fig. 4, having the following properties:
length of joint L = 12.7 mm; adherend thickness hi = h2 = 1.0 mm; adhesive thickness
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Adhesive

Adherend 1

~==========================:t--_. X

z

,
T

h,
.L

haT
~~ LP~_A_d_he_re_n_d_2 ---l

Fig. 4. Single-lap joint and idealization.
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6.0 ---- Roberts ( 1989 )

- Present Method
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Fig. 5. Results for single lap joint-comparison with Roberts' results.

4.0
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000 Carpenter's Element Method

4.03.02.01.0
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0.0

Log(h,lh.l

Fig. 6. Maximum shear stress in the adhesive for different h.-comparison with Carpenter's element
analysis results.
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1.00

0.75
..- Present Method

00<l Cerpenter's Element Method

Max. cr,lp 0.50

4.03.02 .0, .0
0.00 '----''"---'--'-~-'-~-'---'--'--'---'--~--'-~~-'---'----'--'--'--~

0.0

Log(h,/h.)

Fig. 7. Maximum normal stress in the adhesive for different h,,-comparison with Carpenter's
element analysis results.

ha = 0.4 mm; Young's modulus of adherend E( I) = E(2) = 80,000 N mm- 2; Poisson's ratio
y( 1) = y(2) = 0.3; Young's modulus of adhesive Ea = 2000 N mm - 2 and shear modulus of
adhesive Ga = 800 N mm- 2

, the results are presented in nondimensional form in Fig. 5, in
which fa is the average shear force per unit length in the adhesive. The present results are
in good agreement with previously analytical results obtained by Roberts (1989).

Example 2
The second example deals with the analysis of a single-lap joint subject to axial force

p. This example illustrates the effect of the thickness of the adhesive layer on the shear and
normal stress in the adhesive layer, with the following properties: length of joint L = 10
mm; adherend thickness hI = h 2 = 1 mm; E(I) = E(2) = 80,000 N mm- 2 ; ylI) = y(2) = 0.3;
Ea = 2000 N mm - 2; Ga = 800 N mm - 2 and adhesive thickness ha is variable from I mm
to 0.0001 mm. Figures 6 and 7 show comparison between the present results and results

0.40

0.30

0.20
r~·/P

0.10

0.00

x (mm)

Fig. 8. Shear and normal stress in the adhesive for hi = h 2• £(1)/£(2) = 10.
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1.00

0.80

0.60

0.40

0.20

r~"P

0.00

a./p J
·0.20

0.0 2.5 5.0 7.5 10.0

x( mm)

Fig. 9. Shear and normal stress in the adhesive for hI = h2 , £(1)/£(2) = 0.1.

using Carpenter's finite element analysis for determining the maximum shear stress and
normal stress in the adhesive. It is easily seen that Carpenter's finite element analysis results
are inadequate for convergence when the thickness of the adhesive layer in a joint is
extremely small compared with that of the adherend. Carpenter's finite element formulation
is based on the assumption common to the theories of Goland and Reissner as well as
Ojalvo and Eidinoff. Equations (24) show the stress-displacement relations in the adhesive
layer. The singularity occurs when the adhesive thickness ha approaches zero:

[ (
(lY (2)') ]

t a = ~: (U(I) - U(2») +IX.Jha W ; W +1X. 3z"(W(l)' _ W(2Y) ,

aa = Ea (W(l) _ W(2»).
ha

(24a)

(24b)

1.00

0.80

0.40

0.20

0.00

0.0 2.5 5.0 7.5 10.0

x(mm)

Fig. lO. Shear and normal stress in the adhesive for £(1) = £(2), hdhz = 10.
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1.25
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0.75

0.50

0.25

0.00

0.0 2.5 5.0 7.5 10.0

x(mm)

Fig. II. Shear and nonnal stress in the adhesive for E\II = E'21, h,/h2 0.1.

Example 3
The third example is similar to the second example, which illustrates the effect of the

material properties and the thickness of two adherends on the maximum shear and
maximum normal stress in the adhesive; the parameters are L:::: 10 mm; h2 = 1 mm;
E( 2

) = 80,000 N mm- 2
; h" = 0.4 mm; E" = 2000 N mm- 2

; G" = 800 N mm- 2
; vll ) =

v(2) = 0.3; E(I)/E(2) = 0.1-10; hdh 2 = 0.1-10. Figures 8-11 show the distributions of shear
and normal stresses in the adhesive with different adherend thickness and different adherend
materials. Figures 12-15 show the extreme shear and normal stresses in the adhesive acting
on both ends of the joint. These results reveal that the maximum shear and normal stress
always occur at different end zones of the joint and depend greatly on the ratio of E(I)/EI 2)

and ht/h 2 •

0.80

........ Left End
000 Right End

0.60

Extreme 'f. I P 0.40

E'" I e'2l
Fig. 12. Extreme shear stress in the adhesive at both ends for hi = h 2 via different E(I)/E(2).
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0.40

0.30
...... Left End
000 Right End

Extreme 0. I P

-0.10

-0.20

10.07.55.0

E(l) I El2)

2.5
-0.30 I::-'--'--'--'--l............~.l...-L-l--'--'--'- ............l..--'--'--'-.J.-l...--'-...L

0.0

Fig. 13. Extreme normal stress in the adhesive at both ends for h, = h2 via different E(1)/E(2).

5. CONCLUSION

A finite element formulation for single-lap adhesive joints is presented which can
analyse the distribution of the shear and normal stresses in a variety of adhesive joints with
any possible adhesive-layer conditions and nonidentical adherends. The results obtained
are in good agreement with the previously obtained analytical results for a relatively flexible
adhesive layer in the joint. The results also reveal that the maximum shear and normal
stresses are found to increase as the thickness of the adhesive thins. The variation E( I) and
E(2) or hi and h2 might have a significant effect on the magnitudes of the maximum shear
and normal stresses, which always occur at different end zones, in the adhesive layer of the
joint. Thus, the present model provides a rapid and realistic assessment of the stresses in
single-lap adhesive joints for use in designing or repairing a joint.

1.25

1.00

...... Left End
000 Right End

0.75

Extreme 1:. I P

0.50

h, I h2

Fig. 14. Extreme shear stress in the adhesive at both ends for E(I) = E(2) via different h,jh 2•

!lAS :1lhlt.r
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1.00

Extreme 0. I P

0.80

0.60

0.40

5.0

h, I h,

....... Left End
000 Righi End

7.5 10.0

Fig. 15. Extreme normal stress in the adhesive at both ends for E(I) = E(Z) via different hl/h z.
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